A Neoproterozoic Transition in the Marine Nitrogen Cycle
نویسندگان
چکیده
The Neoproterozoic (1000-542 million years ago, Mya) was characterized by profound global environmental and evolutionary changes, not least of which included a major rise in atmospheric oxygen concentrations [1, 2], extreme climatic fluctuations and global-scale glaciation [3], and the emergence of metazoan life in the oceans [4, 5]. We present here phylogenomic (135 proteins and two ribosomal RNAs, SSU and LSU) and relaxed molecular clock (SSU, LSU, and rpoC1) analyses that identify this interval as a key transition in the marine nitrogen cycle. Specifically, we identify the Cryogenian (850-635 Mya) as heralding the first appearance of both marine planktonic unicellular nitrogen-fixing cyanobacteria and non-nitrogen-fixing picocyanobacteria (Synechococcus and Prochlorococcus [6]). Our findings are consistent with the existence of open-ocean environmental conditions earlier in the Proterozoic adverse to nitrogen-fixers and their evolution-specifically, insufficient availability of molybdenum and vanadium, elements essential to the production of high-yielding nitrogenases. As these elements became more abundant during the Cryogenian [7, 8], both nitrogen-fixing cyanobacteria and planktonic picocyanobacteria diversified. The subsequent emergence of a strong biological pump in the ocean implied by our evolutionary reconstruction may help in explaining increased oxygenation of the Earth's surface at this time, as well as tendency for glaciation.
منابع مشابه
Glacial flow of floating marine ice in ‘‘Snowball Earth’’
[1] Simulations of frigid Neoproterozoic climates have not considered the tendency of thick layers of floating marine ice to deform and spread laterally. We have constructed a simple model of the production and flow of marine ice on a planetary scale, and determined ice thickness and flow in two situations: when the ocean is globally icecovered (‘‘hard snowball’’) and when the tropical waters r...
متن کاملDynamics of the Neoproterozoic carbon cycle.
The existence of unusually large fluctuations in the Neoproterozoic (1,000-543 million years ago) carbon-isotopic record implies strong perturbations to the Earth's carbon cycle. To analyze these fluctuations, we examine records of both the isotopic content of carbonate carbon and the fractionation between carbonate and marine organic carbon. Together, these are inconsistent with conventional, ...
متن کاملLate Proterozoic Transitions in Climate, Oxygen, and Tectonics, and the Rise of Complex Life
—The transition to the diverse and complex biosphere of the Ediacaran and early Paleozoic is the culmination of a complex history of tectonic, climate, and geochemical development. Although much of this rise occurred in the middle and late intervals of the Neoproterozoic Era (1000–541 million years ago [Ma]), the foundation for many of these developments was laid much earlier, during the latest...
متن کاملBiogeochemical cycling through the Neoproterozoic-Cambrian transition in China: an integrated study of redox-sensitive elements
متن کامل
Limited impact of atmospheric nitrogen deposition on marine productivity due to biogeochemical feedbacks in a global ocean model
The impact of increasing anthropogenic atmospheric nitrogen deposition on marine biogeochemistry is uncertain. We performed simulations to quantify its effect on nitrogen cycling and marine productivity in a global 3-D ocean biogeochemistry model. Nitrogen fixation provides an efficient feedback by decreasing immediately to deposition, whereas water column denitrification increases more gradual...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 24 شماره
صفحات -
تاریخ انتشار 2014